EUR 49,75
  • Precio final del producto
Envío GRATIS. Ver detalles
En stock.
Vendido y enviado por Amazon. Se puede envolver para regalo.
Evaluating Learning Algor... se ha añadido a la cesta
Compara Precios en Amazon
Añadir a la cesta
EUR 49,75
Envío GRATIS
Vendido por: The_Book_Depository_ES
¿Tienes uno para vender? Vender en Amazon
Volver atrás Ir adelante
Escuchar Reproduciendo... Interrumpido   Estás escuchando una muestra de la edición de audio Audible.
Más información
Ver las 3 imágenes

Evaluating Learning Algorithms: A Classification Perspective (Inglés) Tapa blanda – 6 mar 2014

5.0 de un máximo de 5 estrellas 1 opinión de cliente

Ver los 4 formatos y ediciones Ocultar otros formatos y ediciones
Precio Amazon
Nuevo desde Usado desde
Versión Kindle
Tapa blanda
EUR 49,75
EUR 48,91 EUR 52,61
click to open popover

Descripción del producto

Críticas

"This treasure-trove of a book covers the important topic of performance evaluation of machine learning algorithms in a very comprehensive and lucid fashion. As Japkowicz and Shah point out, performance evaluation is too often a formulaic affair in machine learning, with scant appreciation of the appropriateness of the evaluation methods used or the interpretation of the results obtained. This book makes significant steps in rectifying this situation by providing a reasoned catalogue of evaluation measures and methods, written specifically for a machine learning audience and accompanied by concrete machine learning examples and implementations in R. This is truly a book to be savoured by machine learning professionals, and required reading for Ph.D students."
Peter A. Flach, University of Bristol

"This book has the merit of organizing most of the material about the evaluation of learning algorithms into a homogeneous description, covering both theoretical aspects and pragmatic issues. It is a useful resource for researchers in machine learning, and provides adequate material for graduate courses in machine learning and related fields."
Corrado Mencar, Computing Reviews

Reseña del editor

The field of machine learning has matured to the point where many sophisticated learning approaches can be applied to practical applications. Thus it is of critical importance that researchers have the proper tools to evaluate learning approaches and understand the underlying issues. This book examines various aspects of the evaluation process with an emphasis on classification algorithms. The authors describe several techniques for classifier performance assessment, error estimation and resampling, obtaining statistical significance as well as selecting appropriate domains for evaluation. They also present a unified evaluation framework and highlight how different components of evaluation are both significantly interrelated and interdependent. The techniques presented in the book are illustrated using R and WEKA, facilitating better practical insight as well as implementation. Aimed at researchers in the theory and applications of machine learning, this book offers a solid basis for conducting performance evaluations of algorithms in practical settings.

Ver Descripción del producto

No es necesario ningún dispositivo Kindle. Descárgate una de las apps de Kindle gratuitas para comenzar a leer libros Kindle en tu smartphone, tablet u ordenador.

  • Apple
  • Android
  • Windows Phone

Obtén la app gratuita:


Detalles del producto


Opiniones de clientes

Comparte tu opinión con otros clientes
Ver las 1 opiniones de clientes

Principales opiniones de clientes

22 de abril de 2014
Formato: Tapa blanda|Compra verificada
Comentar|¿Esta opinión te ha parecido útil? Informar de un abuso

Opiniones de clientes más útiles en Amazon.com

Amazon.com: 4,0 de 5 estrellas 1 opiniones
Dr. Howard B. Bandy
4,0 de 5 estrellasAn excellent discussion of performance metrics
7 de julio de 2014 - Publicado en Amazon.com
Compra verificada