No es necesario ningún dispositivo Kindle. Descárgate una de las apps de Kindle gratuitas para comenzar a leer libros Kindle en tu smartphone, tablet u ordenador.

  • Apple
  • Android
  • Windows Phone
  • Android

Obtén la app gratuita:

Precio lista ed. digital: EUR 16,93
Precio Kindle: EUR 13,30

Ahorra EUR 10,61 (44%)

IVA incluido (si corresponde)

Estas promociones se aplicarán a este artículo:

Algunas promociones pueden combinarse; otras no. Para más detalles, revisa los términos y condiciones de cada promoción.

Enviar a mi Kindle o a otro dispositivo

Enviar a mi Kindle o a otro dispositivo

Instant Weka How-to de [Kaluza, Bostjan]
Anuncio de app de Kindle

Instant Weka How-to Versión Kindle

Ver los 2 formatos y ediciones Ocultar otros formatos y ediciones
Precio Amazon
Nuevo desde Usado desde
Versión Kindle
"Vuelva a intentarlo"
EUR 13,30

Kindle Unlimited
Lee más de 1 millón de eBooks en cualquier dispositivo Kindle o en la aplicación gratuita Kindle. Pruébalo gratis durante 30 días

Descripción del producto

Descripción del producto

In Detail

Data mining has become one of the hottest topics in computer science, mainly due to the vast amounts of data in diverse applications such as market basket analysis, reactive business intelligence, human genome sequence mining, speech recognition, document search, and spam detection.

Instant Weka How-to shows you exactly how to include Weka’s machinery in your Java application to stay ahead by implementing cutting-edge data-mining aspects such as regression and classification, and then moving on to more advanced applications of forecasting, decision making, and recommendations.

This book shows you exactly how to include Weka’s machinery in your Java application. The book starts by importing and preparing the data, and then moves on to more serious topics on classification, regression, clustering, and evaluation. For those of you who are eager to dive deeper, this book shows you how to implement online learning or how to create your own classifier. The book includes several application examples such as house price prediction, stock value forecasting, and decision making for direct marketing.


Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A practical guide with examples and applications of programming Weka in Java.

Who this book is for

This book primarily targets Java developers who want to build Weka’s data mining capabilities into their projects. Computer science students, data scientists, artificial intelligence programmers, and statistical programmers would equally gain from this book and would learn about essential tasks required to implement a project. Experience with Weka concepts is assumed.

Biografía del autor

Bostjan Kaluza, PhD is a researcher in artificial intelligence and ubiquitous computing. Since October 2008, he has been working at Jozef Stefan Institute, Slovenia. His research focuses on the development of novel algorithms and approaches, with an emphasis on human behavior analysis from sensor data using machine learning and data mining techniques. Bostjan has extensive experience in Java and Python, and lectures Weka in the classroom. He spent a year as a visiting researcher at the University of Southern California, where he studied suspicious and anomalous agent behavior in the context of security applications. He has published over 40 journal articles and conference papers.

Detalles del producto

  • Formato: Versión Kindle
  • Tamaño del archivo: 1897 KB
  • Longitud de impresión: 80
  • Editor: Packt Publishing (21 de junio de 2013)
  • Vendido por: Amazon Media EU S.à r.l.
  • Idioma: Inglés
  • ASIN: B00DL0CG0I
  • Texto a voz: Activado
  • X-Ray:
  • Word Wise: No activado
  • Tipografía mejorada: No activado
  • Valoración media de los clientes: Sé el primero en opinar sobre este producto
  • Clasificación en los más vendidos de Amazon: n.° 621.960 de Pago en Tienda Kindle (Ver el Top 100 de pago en Tienda Kindle)
  • ¿Quieres informarnos sobre un precio más bajo?
    Si eres el vendedor de este producto, ¿te gustaría sugerir ciertos cambios a través del servicio de atención al vendedor?

Opiniones de clientes

Todavía no hay opiniones de clientes en
5 estrellas
4 estrellas
3 estrellas
2 estrellas
1 estrella

Opiniones de clientes más útiles en (beta) 3.5 de un máximo de 5 estrellas 2 opiniones
4 de 4 personas piensan que la opinión es útil
4.0 de un máximo de 5 estrellas Review 20 de julio de 2013
Por Lucian - Publicado en
Formato: Tapa blanda
Weka is one of the most popular software used for machine learning experiments, in Java world; the software is introduced by "Data Mining: Practical Machine Learning Tools and Techniques". There are two approaches for using Weka: one is through the GUI and another one by programmatically calling the API. The book "Instant Weka how-to" targets programmers willing to integrate Weka inside their programs. It is written by a researcher with a proven experience in this area. In only 80 pages, the reader is shown some practical examples on how to embed Weka ML functionalities in Java applications.

What I like here is the brevity of exposition: for each example, the aims are clearly delineated; the main piece of code - together with imported packages - is shown as a whole block at first and then it is split into functional pieces.

The book starts with showing how to add reference to Weka jar into a Eclipse Java project (here the alternative of importing Weka library through Maven is unfortunately missing , but manually adding jar is a quicker approach for first examples). The programmer is then shown how to load an arff file, how to apply some preprocessing steps (in Weka parlance: filters), training a classifier, adding custom classifier, which is a plus), how to test and evaluate model through k-fold cross validation, how to produce confusion matrix and graphical representation of ROC curve, regression models, association rules, clustering and cluster evaluation, and (de)serialization of the models, among others.

Finally three practical DM problems are solved: classification (predicting buyer/non buyer), stock value forecasting and building a recommendation system.

Some more complex examples would make this books more appealing, e.g. applying a chain of filters (multifilter functionality from Weka),using cross validation for parameter selection, adding more details on how to create the plugin package.

The books fulfills the target stated by its title: a Java programmer can quickly embed Weka models inside his/her own code.

In a nut shell, the code snippets are clear, with no unnecessary burden, and the material presented is well delivered. In my opinion, the books is worth the price.
3 de 3 personas piensan que la opinión es útil
3.0 de un máximo de 5 estrellas quick introduction to Weka programmable features 5 de agosto de 2013
Por filippo - Publicado en
Formato: Versión Kindle
If you are already familiar with Weka and you are looking for a quick introductory guide about its programmatic use, then this book would definitely be useful. It illustrates simple examples about pre-processing, classification, association rules, clustering and recommendation systems.
click to open popover